Democratizing Carrier Screening: A 35-Gene Panel of Routine and Challenging Targets Resolved Using a Single Workflow

James Hernandez, Bradley Hall, Jon Kemppainen, Julie Thibert, Cody Edwards, Liangjing Chen, Ryan Routsong, Chris Fraher, Theodore Markulin, Melissa Church, Jacob Wisotsky, Jonathan Turner, Justin Janovsky, Stela Filipovic-Sadic, Gary, J Latham, Brian C Haynes and Sarah Statt

Asuragen, a Bio-Techne Brand, Austin, TX

Poster Number: eP361

Summary

- The 2021 ACMG practice resource on screening for autosomal recessive and X-linked conditions recommends equitable carrier screening using an expanded set of genes through which diverse populations can benefit from new technologies.
- There are significant technical hurdles for laboratories to accommodate the many challenging genes and variants that require non-NGS workflows.
- Here we demonstrate a single accessible workflow using long-read sequencing sequencing that can genotype variants in technically challenging genes such as FMR1, F8, HBA1/2, SMN1, and CYP21A2 along with 360 loci from 29 autosomal recessive, and X-linked genes.

Introduction

The American College of Medical Genetics (ACMG) recently replaced its preconception and prenatal expanded carrier screening position statement. The new practice resource considers the impact of recent sequencing innovations and, critically, emphasizes the need for equity and social justice in screening. To achieve diverse and inclusive clinical coverage, this resource recommends offering "Ter 3" screening for all pregnancies, which includes 113 genes comprising 97 autosomal recessive genes with a frequency of at least 1220 along with 15 k-linked disease genes. Conventional methods, like short-read sequencing (SRS), fall to adequately cover many of these genes due to reasons including externed Co content or homology to other genomic regions. In fact, to fit they are provided to the content of the content o

To help address these challenges, we created a prototype for a distributable assay solution that incorporates PCF enrichment for a 35-gene, 32 condition carrier screening panel, long-read sequencing (LRS) on Oxford Nanopore Technologies' (ONT) Mkt B or Mkt C, and a custom software application to manage and analyze data. This panel includes content aligned with criteria recommended in ACOS committee opinion number 690 as well as many challenging Ter 3 genes recommended in the latest ACMS confere screening reading reading the screening of the scr

Materials and Methods

More than 200 cell-line, residual whole blood, and contrived samples were evaluated using the 35-gene panel, including loot that are routinely genotyped by RSR and challenging genes such as CYP21A2. FMR1, F8, GBA. HBA1, HBA2, and SMN1 often associated with non-SRS workflows. Samples were split across 4 PCR tubes for target-specific enrichment using novel long-range amplification reagents based on AmplideX* PCR chemistry (Asuragen). Genomic DNA was amplified, barcoded, pooled, prepepe by ligation sequencing kit (DNT) and run on P94.1 flow cells (ONT) using the MK1B or MK1C. Data analysis was managed and initialized using Asuragen's software platform and proprietary bioinformatics opienie.

Figure 1. Prototype Workflow using Long-range PCR, LRS and Bioinformatic Analysis. DNA isolates are enriched using optimized PCR panels and input into ONTS MkIB or MkIC LRS platform. Upon sequencing completion, data are analyzed using a proprietary bioinformatics pipeline. Variants are identified using off the shelf and bespoke algorithms for repeat analysis, allele deconvolution, sequence mutations, and copy number calculations.

Results

We were able to detect multiple classes of pathogenic variation with >90% accuracy per class across >200 cell-lines, residual whole blood, and contrived samples. These variations include short tandem repeats (STRs), single nucleotide variants (SNVs), insertions/detections (INDELs) and copy number variation (SNVs) and structural variants (such as inversions). We also achieved target read balance (>67% amplicons within 5x median coverage) using a high-density multiplex PCR amplification arrans 360 amplicons.

		Predicted			
		Normal	Intermediate	Premutation	Full Mutation
Expected	Full Mutation	0	0	0	12
	Premutation	0	0		
	Intermediate	2		0	0
	Normal		0	0	0

Table 1. Bioinformatic Algorithms Accurately Assigned FMR1 Genotype Category. FMR1 categorical labels were assigned with +98% accuracy. Results were generated across two sequencing runs with a total of 120 samples. CGG sizino precision bounds based on ACMG recommendations! were considered in categorizino samples.

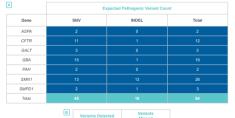


Table 2. Pathogenic SNV and INDEL Variants of Interest Across 7 Genes Were Detected with 91% Sensitivity.

A) 64 variants (16 SNVs) and 16 INDELs) were evaluated across 7 genes. B) Pathogenic SNV and INDEL variants were identified with 91% sensitivity across 30 samples. The 6 missed variants consist of: 3 (all SNVs) CFTR, 1 (SNV) GALT, and 2 (1 SNV 1 INDEL) SMM1.

Table 3. Prototype PCR/NP Assay and Bioinformatic Algorithms Detected SMN1 and SMN2 Copy Number Alterations. SM/11 A) and SM/12 B) copy number was identified with 97% accuracy across 67 samples. Expected cooles and sequence variants were determined using Asuragen's AmolideX PCR/CE SM/11/2 Plus Kit.

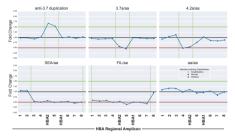
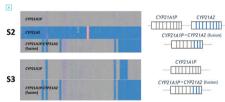



Figure 2. Copy Number Variation Within Alpha Hemoglobin Cluster (HBA172) Were Detected and Categorized Based on the Opy Number Change Portile. Copy number alterations were accurately identified for a variety of amplicons throughout the alpha hemoglobin cluster region. Based on the regions that have detected copy number changes, a deliconfamilification type can be assigned (e.g. SEA FIL, aim 47.3) and are depicted between the green vertical times. Horizontal lines represent expected 60t changes for single copy gain (green) or toss (red.) Individual times. Horizontal lines represent expected 60t changes for single copy gain (green) or toss (red.) Individual reventions are received to the confidence of the c

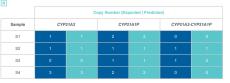


Figure 3. Copy Number Writations and Fasions for CYP21A2 and CYP21A2 FIVer Accurately Calculated and Identificad, A Copy number values were determined unique particip-specific variants (PSVs) of orac disustering and proportional read countries. Images show samples S2 and S3 read clustering and annotation using PSVs along with graphical representation of the supported alides. Blue regions represent CPP2PA2 and grey representation CPP2PA2 and prevented alides. Blue regions represent CPP2PAP2 and grey report perspect CPP2PAP (b) using the method described above, but samples with histon copy numbers and fusions were assessed for the convenience of the con

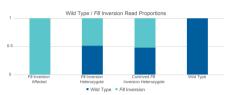


Figure 4. Long-amplicon PCR/NP Prototype Assay Amplified and Identified -100 kb F8 Inversions. F8 inversions were successfully amplified and aligned across 3 samples (1 affected intrino 22 inversions, 1 finton 22 beferencypide, and 1 contrived intrino 1 beferencypide, and 1 contrived intrino 1 beferencypide). The results show the proportion of F8 reads that aligned to either the reference center fluid though of F8 fluversion persone. The width these sample shower for inversion reads.

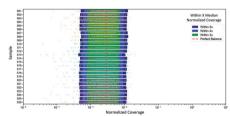


Figure 5. A Single-tube PCR Achieved Targeted Coverage Metrics. 26 samples were assessed using a single-tube PCR targeting 29 genes across 380 amplicons. For all samples, over 97% of those amplicons within 5x of the median normalized coverage. Normalized coverage values represent (amplicon fully spanning readstoat fully spanning read count). Perfect bathero line represents where reads are even distributed across all amplicons.

Conclusion

- FMR1 categorical accuracy was >98% across 120 samples including 60 with premutation or full-mutation repeat expansions.
- Structural alterations and copy number alterations were accurately identified for multiple "hard-to-sequence" genes such as SMN1/2, HBA1/2, CYP21A2 and F8.
- The accuracy in detecting pathogenic SNVs, indels, copy number changes and fusions was 95%; accuracy for calling all pathogenic variants, including FMR1
- High-density multiplex PCR provided uniform sequencing coverage for 29 genes and 360 amplicons in a single tube.
- This prototype assay system demonstrates an accessible, single-platform workflow for both challenging and conventional genes with potential to support equitable, decentralized carrier screening of individuals with diverse ancestries.

References

Gregg AR, et al. Genet Med 2021;23:1793-1806
 Lincoln SE, et al. Genet Med 2021;23:1673-1680
 Spector E, et al. Genet Med . 2021;23(5):799-812

CGG repeats, was 96%.

