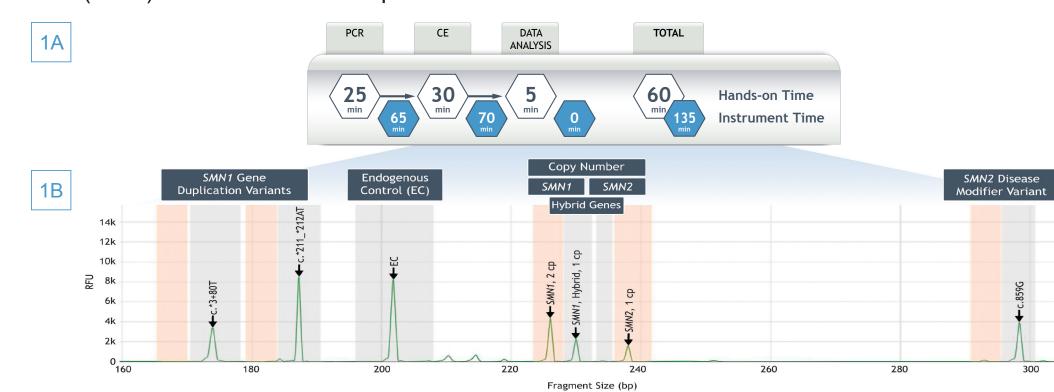
# Buccal Swab Testing with the AmplideX PCR/CE SMN1/2 Plus Kit that Assesses Copy Number and Critical Mutations for SMA

<u>Justin Janovsky</u>, Sarah Edelmon, Ila Wolf, Gary J Latham and John N Milligan Asuragen, Inc., Austin, TX

## Summary

- Carrier screening and SMA diagnostics may be facilitated by the use of less invasive sampling, such as buccal swab collection, as an alternative to blood draws.
- DNA isolates from 60 buccal swab samples were tested with the AmplideX® PCR/CE *SMN1/2* Plus Kit, and overall results were >98% concordant to reference results for *SMN1* and *SMN2* exon 7 copy number, and 100% concordant for the detection of variants c.\*3+80T>G, c.\*211\_\*212del, and c.859G>C.
- Although the final, binned copy number calls were not affected, analysis of 43 matching buccal and whole blood specimens revealed a difference in the normalized ratio distributions between buccal swab and whole blood sample types. This difference was minimized by using user-defined calibration (UDC) and calibrating to a buccal reference sample as outlined in the kit protocol guide.


#### Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease that results from mutation of the survival motor neuron 1 gene (*SMN1*), and the most common genetic cause of infant death. SMA treatments SPINRAZA®, Evrysdi™, and ZOLGENSMA® achieve profound benefits on survival and motor milestones by modifying *SMN2* splicing or using gene replacement with functional SMN genes. Early detection of SMA (including *SMN2* copy number status) and identification of at-risk couples through carrier screening is critical to aid in early intervention and family planning decisions.

We developed an accurate and robust single-tube PCR assay and companion software (AmplideX PCR/CE *SMN1/2* Plus Kit\*) that uses capillary electrophoresis (CE) to quantify *SMN1* and *SMN2* copy numbers (0 to ≥4). This kit also determines the presence/absence of the two *SMN1* gene duplication "silent carrier" variants, c.\*3+80T>G and c.\*211\_\*212del, and the *SMN2* disease modifier variant c.859G>C. The *SMN1/2* Plus Kit has been previously validated for use with DNA isolated from blood. Here, we show that DNA isolated from buccal swabs can also be used to determine *SMN1* and *SMN2* copy number and other variants using this kit.

#### **Materials and Methods**

A total of 60 DNA samples isolated from buccal swabs, with varying *SMN1/2* copies and variant status, were tested using the *SMN1/2* Plus kit at a single site (Asuragen). Samples were tested in two cohorts: an initial cohort containing 17 samples isolated from buccal swabs using column- or magnetic bead-based methods, and a second cohort of 43 samples isolated from matched blood and buccal samples using column-based methods. PCR products were generated using a Veriti thermal cycler and resolved on Applied Biosystems<sup>™</sup> 3500xL, 3130x*l*, 3730x*l*, and SeqStudio<sup>™</sup> Genetic Analyzers. Raw electrophoresis data (.fsa) files were directly imported into an assay-specific analysis module of the AmplideX Reporter software for genotyping. This software automates peak detection and size-based classification, and performs *SMN1* and *SMN2* exon 7 copy number quantification, detection of gene duplication and disease modifier variants, and sample- and batch-level quality control checks. Samples were analyzed using both default calibration and user-defined calibration (UDC) as described in the protocol.



**Figure 1. Assay Workflow, Electropherogram Output, and Automatic Results Generation. A)** Assay workflow involves PCR followed by resolution of amplicons via capillary electrophoresis (CE) and automatic data analysis by the companion software. **B)** Fluorescently-labeled PCR amplicons are detected and quantified on a genetic analyzer; the electropherogram peaks are categorized by size (in base pairs) and, following batch-specific and replicate-specific calibration, normalized ratios (NR) generated by the companion software are binned to determine *SMN1* and *SMN2* exon 7 copy numbers. Mutation-specific peaks are used for positive/negative detection of gene duplication and disease modifier variants.

\*Research Use Only. Not for use in diagnostic procedures. Presented at ACMG 2021, April 13-16, virtual. Results

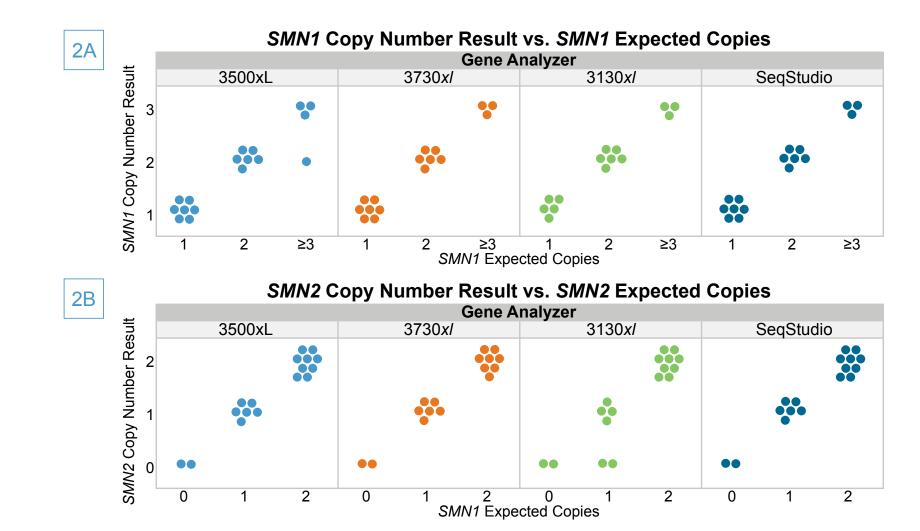



Figure 2. SMN1 and SMN2 Copy Number Concordance of 17 Buccal Samples with MLPA Results. Reference copy number results were determined using an MLPA-based assay that resolves SMN1 and SMN2 exon 7 copy number to 0, 1, 2, and ≥3 copies. Concordance by copy number from four genetic analyzers are shown. A) SMN1 exon 7 copy numbers were concordant for 98.4% (62/63) of measurements (5 measurements excluded due to Precision (PR) QC failures). B) SMN2 exon 7 copy numbers were concordant for 97.0% (65/67) of measurements (1 PR failure excluded). Four samples were positive for both c.\*3+80T>G and c.\*211\_\*212del on all CE instruments.

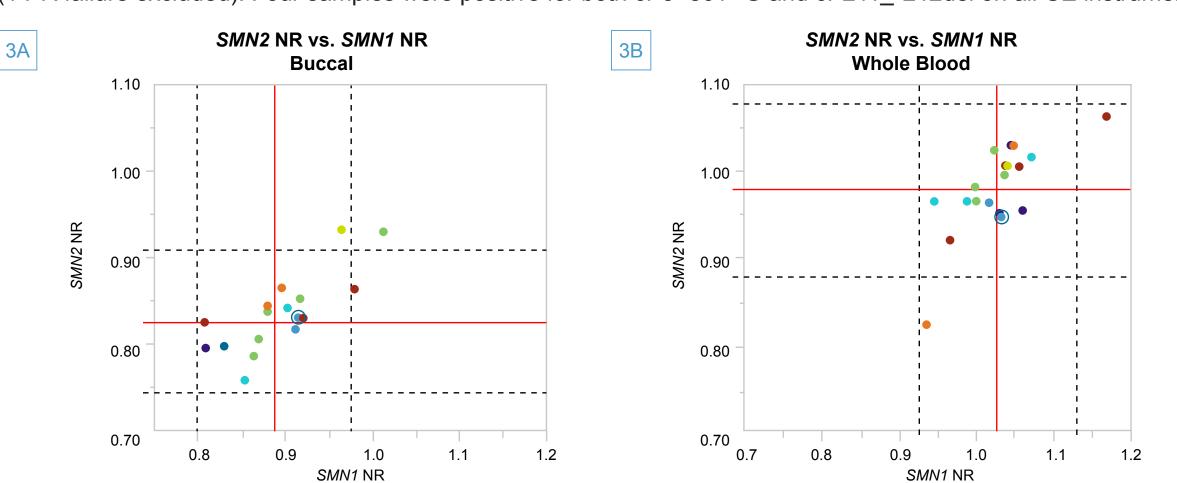



Figure 3. Selection of User-Defined Calibrators for SMN1/2 Copy Number Quantification. In the second cohort of samples, 19 of 43 were determined to be potential user-defined calibrators (i.e. 2 copies of both SMN1 and SMN2 exon 7). For each sample type and for each genetic analyzer, the mean SMN1 normalized ratio (NR) and mean SMN2 NR were calculated (depicted as vertical and horizontal red lines, respectively). Results shown were generated on a SeqStudio with A) buccal swab, and B) whole blood samples from matching donors. Samples were determined to be suitable user-defined calibrators if both their SMN1 and SMN2 NR values consistently fell within 10% of the mean (range boundaries depicted as black dotted lines). Chosen UDC indicated with blue circle.

| 4A             | Default Calibration |                 |                  |                 |                    | 4B             | User-Defined Calibration (UDC) |                 |                  |                 |                    |
|----------------|---------------------|-----------------|------------------|-----------------|--------------------|----------------|--------------------------------|-----------------|------------------|-----------------|--------------------|
|                | 3500xL              | 3730 <i>xI</i>  | 3130 <i>xI</i>   | SeqStudio       | Total              |                | 3500xL                         | 3730 <i>xI</i>  | 3130 <i>xI</i>   | SeqStudio       | Total              |
| SMN1 Exon 7    | 100%<br>(42/42)     | 100%<br>(43/43) | 100%<br>(40/40)  | 100%<br>(42/42) | 100%<br>(167/167)  | SMN1 Exon 7    | 100%<br>(40/40)                | 100%<br>(42/42) | 100%<br>(39/39)  | 100%<br>(41/41) | 100%<br>(162/162)  |
| SMN2 Exon 7    | 100%<br>(40/40)     | 100%<br>(43/43) | 97.3%<br>(36/37) | 100%<br>(42/42) | 99.4%<br>(161/162) | SMN2 Exon 7    | 100%<br>(38/38)                | 100%<br>(42/42) | 97.2%<br>(35/36) | 100%<br>(40/40) | 99.4%<br>(155/156) |
| c.*3+80T>G     | 100%<br>(43/43)     | 100%<br>(43/43) | 100%<br>(40/40)  | 100%<br>(42/42) | 100%<br>(168/168)  | c.*3+80T>G     | 100%<br>(42/42)                | 100%<br>(42/42) | 100%<br>(39/39)  | 100%<br>(41/41) | 100%<br>(164/164)  |
| c.*211_*212del | 100%<br>(43/43)     | 100%<br>(43/43) | 100%<br>(40/40)  | 100%<br>(42/42) | 100%<br>(168/168)  | c.*211_*212del | 100%<br>(42/42)                | 100%<br>(42/42) | 100%<br>(39/39)  | 100%<br>(41/41) | 100%<br>(164/164)  |
| c.859G>C       | 100%<br>(43/43)     | 100%<br>(43/43) | 100%<br>(40/40)  | 100%<br>(42/42) | 100%<br>(168/168)  | c.859G>C       | 100%<br>(42/42)                | 100%<br>(42/42) | 100%<br>(39/39)  | 100%<br>(41/41) | 100%<br>(164/164)  |

**Figure 4. Concordance of Buccal Swab** *SMN1/2* **Copy Number with Matched Blood Results.** Reference results were established in house using a validated version of the *SMN1/2* Plus Kit with DNA isolated from 43 blood samples matched to buccal samples from the same donor using a 3500xL genetic analyzer. Results are shown for **A)** default calibration, and **B)** user-defined calibration (UDC). QC failures were excluded from analysis. The UDC was excluded from UDC analysis.

Poster Number: eP418

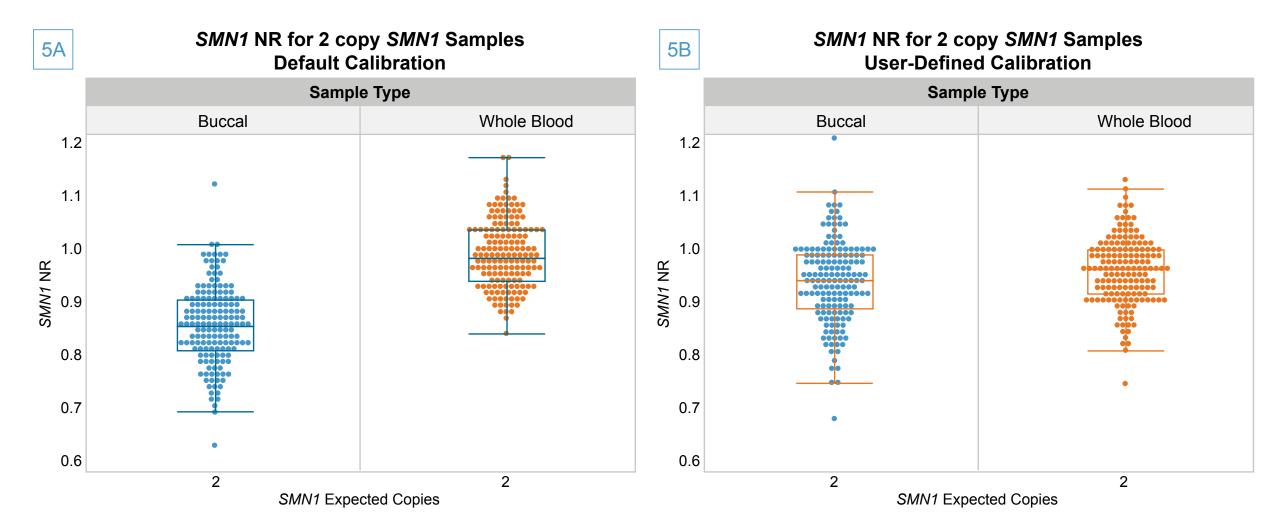
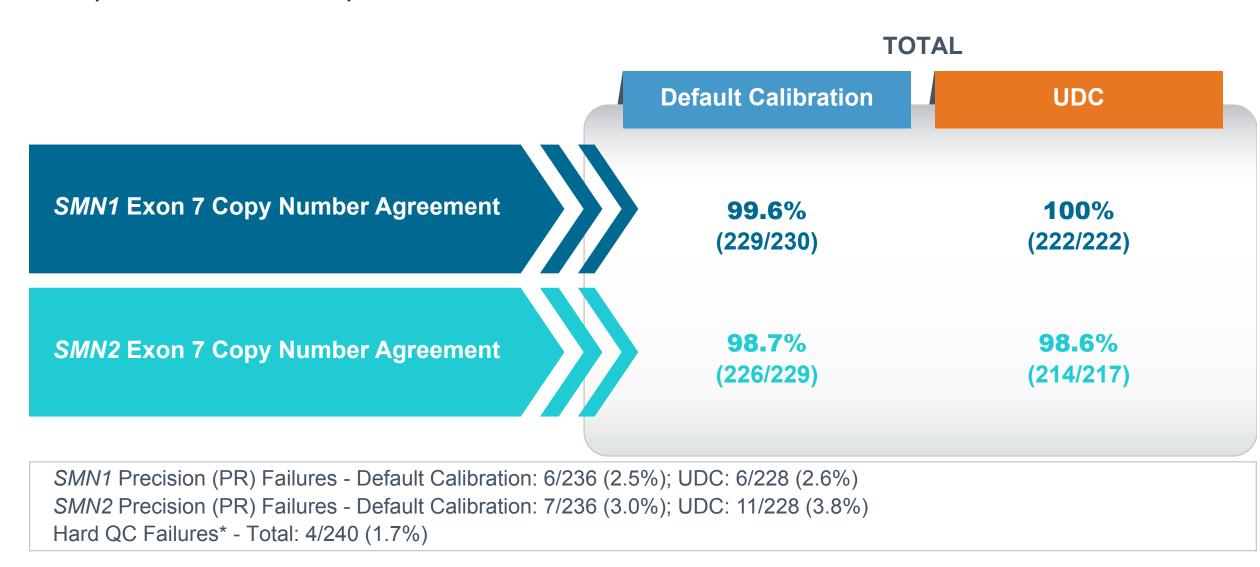




Figure 5. Comparison of Blood and Buccal Results with Default and User-Defined Calibration (UDC). SMN1 NR values for 2 copy SMN1 buccal (blue) and whole blood (orange) samples across all genetic analyzers analyzed with A) default calibration or B) UDC.



**Figure 6. Cumulative Buccal Swab Results Compared to Reference Results.** Percent agreement for *SMN1* and *SMN2* copy number results for all 60 buccal swab specimens tested in both cohorts across 4 genetic analyzers. Hard QC Failures (\*) include Ladder (LD) QC Failures and Low Signal (LS) QC Failures.

### Conclusions

- SMN1 and SMN2 copy number calls for buccal samples agreed with reference values for >98% of measurements across 4 genetic analyzers. Variant detection results for c.\*3+80T>G, c.\*211\_\*212del, and c.859G>C were in perfect agreement with reference values for all measurements.
- While SMN1 and SMN2 exon 7 copy numbers were accurately determined in buccal samples using default calibration, a sample type bias compared to blood was observed. This bias was reduced with UDC, while maintaining accurate quantification of SMN1/2 copy numbers.
- Signal intensities on CE were generally lower for buccal swab samples than blood samples, especially on the 3130xl genetic analyzer. Increased DNA input or injection time or voltage may improve signals.
- These results demonstrate that DNA from buccal swab samples may be analyzed with comparable results to blood samples using the AmplideX PCR/CE SMN1/2 Plus Kit and AmplideX Reporter software.

